中科院工程热物理研究所从2005年开始研发先进压缩空气储能技术,到1.5MW、10 MW压缩空气储能示范项目的落地,再到100 MW项目的实施,130余人的技术研发团队的每个节点突破,可以说代表了我国新型压缩空气储能的发展进程。多年沉淀成硕果,当前无论是装机规模、技术水平,还是系统效率,我国新型压缩空气储能均走在世界前列。
解决传统压缩空气储能瓶颈
什么是压缩空气储能?作为储能方式的一种,压缩空气储能是利用电网负荷低谷时的剩余电力压缩空气,并将其储藏在高压密封设施内,在用电高峰释放出来驱动膨胀机带动发电机发电。早在1978年,德国就建成世界第一座大规模压缩空气蓄能示范电站,紧跟着美国、日本和以色列等国家相继投建了相关项目。
“压缩空气储能具有规模大、周期长、单位投资小等优势,是极具发展潜力的大规模储能技术。传统压缩空气储能技术来源于燃气轮机技术,我国传统压缩空气储能与国外水平相比有较大差距。”纪律进一步指出,压缩空气储能依赖化石燃料燃烧提供热源,同时需要特定的地理条件建造大型储气室,如岩石洞穴、盐洞、废弃矿井等,有地理条件限制,且系统效率仅在50%左右,经济性相对较差。
近年来,为解决压缩空气储能技术瓶颈问题,中科院工程热物理所技术团队开展了新型压缩空气储能技术研发,以储气罐替代储气室,没有场地限制,且将系统效率提升10%—15%。
目前中科院工程热物理研究所取得了一系列国际领先的技术成果,可同时解决传统压缩空气储能依赖大型储气室、依赖化石燃料、系统效率低三个主要技术瓶颈。以技术为依托,从2013年开始,中科院工程热物理研究所技术团队先后分别在河北廊坊、贵州毕节建成1.5MW、10M级新型压缩空气储能示范项目,后者系统效率达到60.2%,是目前全球系统效率最高的压缩空气储能系统。
“在新型压缩空气储能技术上,我国与国外发达国家的起点一致。目前全球已建成的MW级新型压缩空气储能项目的机构有4家,我国处于领先地位。张家口市100MW先进压缩空气储能示范项目预计于今年年底投运,其系统设计效率提升至70.4%,这将进一步巩固我国在压缩空气储能领域的国际地位。”纪律称。
100MW先进压缩空气储能示范项目核心设备多级透平膨胀机
数据显示,截至2020年底,我国已投运的储能项目累计装机规模35.6GW,其中抽水蓄能占比达89.3%,压缩空气储能的占比仅为0.03%。世界领先的技术,为何没在我国大规模推广?
在纪律看来,压缩空气储能是一项高门槛的领域,目前大多研发机构仍处于理论研究和系统分析阶段。首先是技术门槛高,压缩空气储能是多学科交叉、多过程耦合的系统工程,要组建涵盖了工程热力学、传热学、流体力学、电力系统、机械工程、控制技术等学科的大规模专业技术研发团队。在压缩膨胀设备、空气换热、系统控制集成方面存在较高技术壁垒;其 次是规模大、投资成本高,系统规模在10—100MW级示范工程的建设资金高达数亿元,是可以实现长期稳定收益的大规模储能电站项目。
纪律指出,目前新型压缩空气储能仍处于示范阶段,随着张家口100MW示范项目的建成,将完成百兆瓦先进压缩空气储能型压缩空气储能产品的定性,此后再致力于规模化量产和推广。“1.5MW项目系统效率为52%,10MW项目系统效率为60%,100MW系统设计效率达到70%。未来随着系统规模扩大,其效率将进一步提升至75%以上。系统规模越大、储能容量越高,系统的效率就越高,随之单位成本越低、经济性越好。”在他看来,100MW级项目最具商业推广条件,这也是大规模压缩空气储能的真正“赛道”。
国际首套100MW先进压缩空气储能示范项目储热子系统安装现场
呼唤价格政策相关预测显示,在碳达峰、碳中和愿景下,作为新能源发展的关键支持技术,到2025年,我国储能装机将较目前水平增长10倍以上。
“要满足电网系统对大规模、长时间储能的需求,新型压缩空气储能当仁不让。与同属物理储能方式的抽水蓄能相比,新型压缩空气储能在建设周期和投资成本上更具优势,抽水蓄能建设周期为6—8年,新型压缩空气建设周期仅为1.5—2年,且不涉及移民搬迁问题。基于抽水蓄能对地理条件的要求,未来市场增量有限。”在纪律看来,压缩空气储能同抽水蓄能一样,都属于长时大规模,并与电化学储能及飞轮等形成互补关系。未来压缩空气储能将主要应用于电网侧,其次是大规模百万机组发电侧、核电机组和一些火电的灵活性改造方面。